Introduction to the ACTS Collection Why/How Do We Use These Tools? #### **Tony Drummond** Computational Research Division Lawrence Berkeley National Laboratory Sixth ACTS Collection Workshop August 24-26, 2005 - Berkeley, CA 94703 ### Where are the applications? - Accelerator Science - Astrophysics - Biology - Chemistry - Earth Sciences - Materials Science - Nanoscience - Plasma Science Omega3P is a parallel distributed memory code intended for the modeling and analysis of accelerator cavities, which requires the solution of generalized eigenvalue problems. A parallel exact shift-invert eigensolver based on PARPACK and SuperLU has allowed for the solution of a problem of order 7.5 million with 304 million nonzeros. #### Commonalities: - Major advancements in Science - Increasing demands for computational power - Rely on available computational systems, languages, and software tools # Increasing Computational Demand (Area: Atmospheric Research) #### SPECTRUM OF ATMOSPHERIC PHENOMENA **PFLOPS** Physics limits the model's resolution, higher resolution will require computer systems of higher capacities TURBULANCE VISCOUS LARGE INERTIAL SUBRANGE EDDIES SUBRANGE # Multidisciplinary Research (Area: Climate Research) 1/10 Degree Global POP Ocean Model Currents at 50m Depth Mathew E. Maltruda and Julie L. McClean Atmospheric general circulation model **Dynamics** Sub-grid scale parameterized physics processes Turbulence, solar/infrared radiation transport, clouds. Oceanic general circulation model Dynamics (mostly) Sea ice model Viscous elastic plastic dynamics Thermodynamics Land Model Energy and moisture budgets Biology Chemistry Tracer advection, possibly stiff rate equations. Ocean Biology ### Some Computational Challenges In Climate Research #### Climate Models: - Higher resolutions are computational demanding - No-trivial load-balancing - Coupling different physics, times and spatial ### **Key Lesson Learned** (Software Development) "We need to move away from a coding style suited for serial machines, where every macrostep of an algorithm needs to be thought about and explicitly coded, to a higher-level style, where the compiler and library tools take care of the details. And the remarkable thing is, if we adopt this higher-level approach right now, even on today's machines, we will see immediate benefits in our productivity." W. H. Press and S. A. Teukolsky, 1997 Numerical Recipes: Does This Paradigm Have a future? ### **Key Lesson Learned** (Software Development) Changes in algorithms sometimes lead to several years advancement in computations. Needs Flexibility! Algorithmic Implementations Application Data Layout Control 1/0 Its performance is influenced by system parameters and in steps in the algorithm. Critical points: portability and scalability. Tuned and machine Dependent modules New Architecture requires extensive tuning, may even require new programming paradigms. This is Difficult to maintain and not "very" portable. ### **Key Lesson Learned** (Software Development) # Lesson = High Quality Software Reusability - Scientific or engineering context - Domain expertise - Simulation codes - Data Analysis codes ### General Purpose Libraries - Data Structures - Algorithms - Code Optimization - Programming Languages - •O/S Compilers Hardware - Middleware - Firmware # Lesson = High Quality Software Reusability **Funded by DOE/ASCR** Library Development **Numerical Tools** Code Development Run Time Support http://acts.nersc.gov ### General Purpose Libraries - Data Structures - Algorithms - Code Optimization - Programming Languages - •O/S Compilers Hardware - Middleware - Firmware | Computational Problem | Methodology | Algorithms | Library | |-----------------------------|-------------------------|---|-----------------------------------| | Systems of Linear Equations | | LU
Factorization | ScaLAPACK(dense) SuperLU (sparse) | | | | Cholesky
Factorization | ScaLAPACK | | | | LDL ^T
(Tridiagonal
matrices) | ScaLAPACK | | | | QR
Factorization | ScaLAPACK | | | QR with column pivoting | ScaLAPACK | | | | | LQ factorization | ScaLAPACK | | Computational Problem | Methodology | Algorithms | Library | |-----------------------------|----------------------|---------------------------------|--------------------------| | Systems of Linear Equations | | Conjugate
Gradient | AztecOO (Trilinos) PETSc | | (cont) | Iterative
Methods | GMRES | AztecOO PETSc Hypre | | | | CG Squared | AztecOO
PETSc | | | | Bi-CG Stab | AztecOO
PETSc | | | | Quasi-Minimal
Residual (QMR) | AztecOO | | | | | AztecOO
PETSc | #### Structure of PETSc #### **Hypre Conceptual Interfaces** #### **INTERFACE TO SOLVERS** List of Solvers and Preconditioners per Conceptual Interface | | System Interfaces | | | | |-----------|-------------------|---------|-----|----| | Solvers | Struct | SStruct | FEI | IJ | | Jacobi | X | | | | | SMG | X | | | | | PFMG | X | | | | | BoomerAMG | X | X | X | Χ | | ParaSails | X | X | X | X | | PILUT | X | X | X | X | | Euclid | X | X | X | X | | PCG | X | X | X | X | | GMRES | X | X | Χ | X | | Computational Problem | Methodology | Algorithms | Library | |-----------------------------|--------------------------------|--------------------------------|---------------------------| | Systems of Linear Equations | | SYMMLQ | PETSc | | (cont) | | Precondition CG | AztecOO
PETSc
Hypre | | | Iterative | Richardson | PETSc | | Methods (cont) | Block Jacobi
Preconditioner | AztecOO
PETSc
Hypre | | | | | Point Jocobi
Preconditioner | AztecOO | | | | Least Squares
Polynomials | PETSc | | Computational Problem | Methodology | Algorithms | Library | |-----------------------------|------------------------|------------------------------------|---------------------------| | Systems of Linear Equations | | SOR Preconditioning | PETSc | | (cont) | | Overlapping Additive
Schwartz | PETSc | | | Iterative | Approximate Inverse | Hypre | | | Methods (cont) | Sparse LU preconditioner | AztecOO
PETSc
Hypre | | | | Incomplete LU (ILU) preconditioner | AztecOO | | | | Least Squares Polynomials | PETSc | | | MultiGrid (MG) Methods | MG Preconditioner | PETSc
Hypre | | | | Algebraic MG | Hypre | | | | Semi-coarsening | Hypre | | Computational Problem | Methodology | Algorithm | Library | |---|---------------------------------|--|-------------------------------------| | Linear Least
Squares Problems | Least Squares | $\min_{x} b - Ax _2$ | ScaLAPACK | | | Minimum Norm
Solution | $\min_{x} x _2$ | ScaLAPACK | | | Minimum Norm
Least Squares | $ \frac{\min_{x} b - Ax _{2}}{\min_{x} x _{2}} $ | ScaLAPACK | | Standard
Eigenvalue Problem | Symmetric
Eigenvalue Problem | $AZ = \lambda Z$
For $A=A^H$ or $A=A^T$ | ScaLAPACK (dense)
SLEPc (sparse) | | Singular Value
Problem | Singular Value
Decomposition | $A = U\Sigma V^{T}$ $A = U\Sigma V^{H}$ | ScaLAPACK (dense)
SLEPc (sparse) | | Generalized Symmetric Definite Eigenproblem | Eigenproblem | $AZ = \lambda BZ$ $ABZ = \lambda Z$ $BAZ = \lambda Z$ | ScaLAPACK (dense)
SLEPc (sparse) | | Computational Problem | Methodology | Algorithm | Library | |-------------------------|--------------|-------------------------------|---------| | Non-Linear
Equations | Newton Based | Line Search | PETSc | | | | Trust Regions | PETSc | | | | Pseudo-Transient Continuation | PETSc | | | | Matrix Free | PETSc | | Computational Problem | Methodology | Algorithm | Library | |-----------------------|---------------|-------------------------|---------| | Non-Linear | | Newton | OPT++ | | Optimization | | | TAO | | | | Finite-Difference | OPT++ | | | Nowton Bood | Newton | TAO | | | Newton Based | Quasi-Newton | OPT++ | | | | | TAO | | | | Non-linear Interior | OPT++ | | | | Point | TAO | | | CG | Standard Non- | OPT++ | | | | linear CG | TAO | | | | Limited Memory
BFGS | OPT++ | | | | Gradient
Projections | TAO | | | Direct Search | No derivate information | OPT++ | #### **TAO - Interface with PETSc** #### **OPT++ Interfaces** - Four major classes of problems available - NLF0(ndim, fcn, init_fcn, constraint) - Basic nonlinear function, no derivative information available - NLF1(ndim, fcn, init_fcn, constraint) - Nonlinear function, first derivative information available - FDNLF1(ndim, fcn, init_fcn, constraint) - Nonlinear function, first derivative information approximated - NLF2(ndim, fcn, init_fcn, constraint) - Nonlinear function, first and second derivative information available | Computational Problem | Methodology | Algorithm | Library | |-----------------------|---------------|-------------------------|---------| | Non-Linear | | Newton | OPT++ | | Optimization | | | TAO | | | | Finite-Difference | OPT++ | | | Nowton Bood | Newton | TAO | | | Newton Based | Quasi-Newton | OPT++ | | | | | TAO | | | | Non-linear Interior | OPT++ | | | | Point | TAO | | | CG | Standard Non- | OPT++ | | | | linear CG | TAO | | | | Limited Memory
BFGS | OPT++ | | | | Gradient
Projections | TAO | | | Direct Search | No derivate information | OPT++ | | Computational Problem | Methodology | Algorithm | Library | |--|----------------------------------|---|----------------------------| | Non-Linear
Optimization | Semismoothing | Feasible
Semismooth | TAO | | (cont) | Semismooning | Unfeasible semismooth | TAO | | Ordinary
Differential
Equations | Integration | Adam-Moulton (Variable coefficient forms) | CVODE (SUNDIALS)
CVODES | | | Backward Differential Formula | Direct and Iterative Solvers | CVODE
CVODES | | Nonlinear
Algebraic
Equations | Inexact Newton | Line Search | KINSOL (SUNDIALS) | | Differential
Algebraic
Equations | Backward
Differential Formula | Direct and Iterative Solvers | IDA (SUNDIALS) | | Computational Problem | Support | Techniques | Library | |-----------------------|--------------------|---------------------------|-----------------------------------| | Writing Parallel | | Shared-Memory | Global Arrays | | Programs | | Distributed
Memory | CUMULVS (viz)
Globus (Grid) | | | | Grid Generation | OVERTURE | | | Distributed Arrays | Structured Meshes | CHOMBO (AMR) Hypre OVERTURE PETSc | | | | Semi-Structured
Meshes | CHOMBO (AMR)
Hypre
OVERTURE | | | | GRID | Globus | | | Distributed | Remote Steering | CUMULVS | | | Computing | Coupling | PAWS | | Computational Problem | Support | Technique | Library | |-----------------------------------|-------------------------|---------------------------|----------------| | Writing Parallel Programs (cont.) | Distributed Computing | Check-point/restart | CUMULVS | | Profiling | Algorithmic | Automatic instrumentation | PETSc | | | Performance | User
Instrumentation | PETSc | | | Execution | Automatic Instrumentation | TAU | | | Performance | User
Instrumentation | TAU | | Code
Optimization | Library
Installation | Linear Algebra
Tuning | ATLAS | | Interoperability | Code Generation | Language | BABEL
CHASM | | | | Components | CCA | # Software Reusability What have we gained? What are the goals? min[time_to_first_solution] (prototype) ➤ min[time_to_solution] (production) - Outlive Complexity - Increasingly sophisticated models - Model coupling - Interdisciplinary - Sustained Performance - Increasingly complex algorithms - Increasingly diverse architectures - Increasingly demanding applications (Software Evolution) (Long-term deliverables) **▶min**[software-development-cost] max[software_life] and max[resource_utilization] # Minimum Requirements for Reusable High Quality Software Tools #### Robustness - Maintained across platforms - Compiler independent - Precision Independent - Error Handling - Check Pointing # Minimum Requirements for Reusable High Quality Software Tools - Robust - Scalable (across large Petascale systems) # Minimum Requirements for Reusable High Quality Software Tools - Robust - Scalable - Extensible (New Algorithms, New Techniques) # Minimum Requirements for Reusable High Quality Software Tools - Robust - Scalable - Extensible - Interoperable - Frameworks/PSE - Tool-to-Tool - Component Technology - More Flexible - Retains better Robustness, Scalability, and Extensibility - Long term pay-offs http://www.cca-forum.org # Minimum Requirements for Reusable High Quality Software Tools - Robust - Scalable - Extensible - Interoperable - User Friendly Interfaces - Well documented #### **User Interfaces** ``` CALL BLACS_GET(-1, 0, ICTXT) CALL BLACS_GRIDINIT(ICTXT, 'Row-major', NPROW, NPCOL) : CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL) : CALL PDGESV(N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB, DESCB, $ INFO) ``` #### **Library Calls** - -ksp_type [cg,gmres,bcgs,tfqmr,...] - -pc_type [lu,ilu,jacobi,sor,asm, ...] #### More advanced: - -ksp_max_it <max_iters> - -ksp gmres restart <restart> - -pc_asm_overlap <overlap> Command lines #### **Problem Domain** #### **User Interfaces** matlab*P Star-P Science U.S. DEPARTMENT OF ENERGY COLLECTION Ax = b $Az = \lambda z$ NetSolve View_field(T1) User $$A = U\Sigma V^T$$ ### High Level Interfaces ### Minimum Requirements for Reusable **High Quality Software Tools** - Robust - Scalable - Extensible - Interoperable - User Friendly Interfaces - Well documented - Periodic Tests and Evaluations Versions (tools, systems, O/S, compilers) - Sanity-check (robustness) - Interoperability (maintained) - Consistent Documentation # Minimum Requirements for Reusable High Quality Software Tools - Robust - Scalable - Extensible - Interoperable - User Friendly Interfaces - Well documented - Periodic Tests and Evaluations - Portability and Fast Adaptability (The Evolution) # Tool Evolution Example: ScaLAPACK ### **Acknowledgments** - Department of Computer Science, Indiana University, for facilitating the use of their cluster for the GA, TAU and CCA hands-on tutorials - National Energy Research Scientific Computing Center (NERSC) for the use of their IBM SP (seaborg) for the ScaLAPACK, SuperLU, PETSc, and SLEPc hands-on tutorials - Yeen Mankin for all the great management and support running all the logistics of the workshop - Suzanne Stevenson for reproduction of all the workshop materials - To all the speakers and teams represented at the Sixth DOE ACTS Collection Workshop ## This week at the Workshop | Tuesday
Perseverance
Hall | Wednesday
Perseverance
Hall | Thursday
Perseverance
Hall | Friday
Perseverance
Hall | |--|--|---------------------------------------|---| | Breakfast
8:00 - 8:30 | Breakfast
8:00 - 8:30 | Breakfast
8:00 - 8:30 | Breakfast
8:00 - 8:30 | | Welcome
Remarks and
Introduction
O. Marques
T. Drummond
08:30-10:00 | PDEs PETSC Part I M. Knepley 08:30-10:00 | Tuning ATLAS T. Drummond 08:30 –09:15 | PDEs
MCT
J. Larson
08:30 -09:30
Steering
CUMULVS
J. Kohl
09:30 - 10:30 | | | | Invited Talk R. Kirby 09:15-10:00 | | | Coffee Break
10:00 - 10:30 | Coffee Break
10:00 – 10:30 | Coffee Break
10:00 - 10:30 | | | | | | Coffee Break
10:30 – 11:00 | | Tuesday
Perseverance
Hall | Wednesday
Perseverance
Hall | Thursday
Perseverance
Hall | Friday
Perseverance
Hall | |--|---|---|--| | ScaLAPACK O. Marques 10:30 -11:30 | PETSc
Part II | SUNDIALS
R. Serban
10:30 -11:30 | CCA
CCA-Team*
11:00 –12:30 | | SuperLU
X. Li
11:30-12:30 | M. Knepley
10:30 –12:30 | Overture
B. Henshaw
11:30 –12:30 | | | Lunch
12:30-13:30 | Lunch
12:30-13:30 | Lunch
12:30-13:30 | Lunch
12:30 – 13:30 | | Hypre
R. Falgout
13:30 –14:30 | SLEPc
J. Roman
13:30 -14:30 | Global Arrays
B. Palmer
M. Krishnan
13:30 –14:30 | CCA
CCA-Team 13:30 –15:00 | | Trilinos
M.Heroux
14:30 –15:30 | TOPS
D. Keyes
14:30 –15:30 | TAU
S. Shende
14:30 –15:30 | Coffee Break
15:00 – 15:30 | | Coffee Break
15:30 – 16:00 | Coffee Break
15:30 – 16:00 | Coffee Break
15:30 - 16:00 | 212 Wheeler
UCB | | 212 Wheeler
UCB | 212 Wheeler
UCB | 212 Wheeler
UCB | CCA hands-On
CCA Team*
15:30 – 18:30 | | SuperLU
Hands-On
X. LI
16:00 – 17:00 | PETSc
Hands-on
M. Knepley
16:00 – 17:00 | GA Hands-On
B. Palmer
M. Krishnan
16:00 – 17:00 | | | ScaLAPACK
Hands-On
O. Marques
17:00 – 18:00 | SLEPc
Hands-On
J. Roman
17:00 – 18:00 | TAU
Hands-On
S. Shende
17:00 – 18:00 | | | Dinner I- House
H.D. Simon
7:00 – 9:00 | | | | ### This week at the Workshop #### Hands-On: - Your login name should be written in your badge - Passwords: On Tolman Hall PCs: c@1summer #### On NERSC computers: acts04bbxx, where **bb** = Your initials (first name and last name) in lowercase xx = Your training account number, this can be one or two digits #### Examples: - 1. Joe Lone, user id train55, password = acts05jl55 - Mary Lee Second, user id train1, password = acts05ml1 ### This week at the Workshop - Picture today at lunch break outside the cafeteria! - Return your Vouchers for travel!! - Return your sign policy forms ### THANK YOU